



**UK's National Measurement** Institute founded in 1900



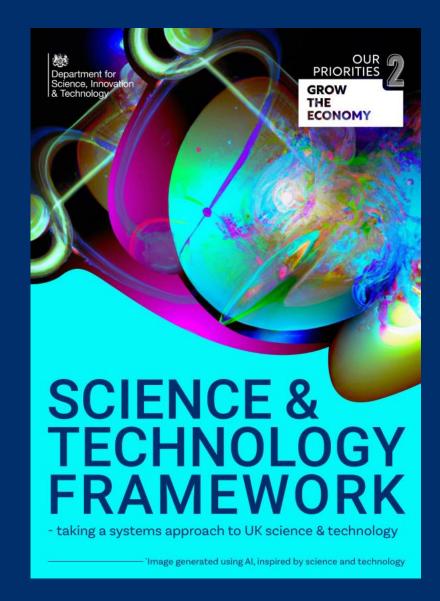
Public Corporation owned by Dept for Science, Innovation & **Technology** 



1200+ staff, 200+ visiting researchers



Independent & Impartial advice




World-leading breadth and depth of metrology expertise

# **5 Critical Technologies**



- Artificial Intelligence (AI) machines that perform tasks normally performed by human intelligence, especially when the machines learn from data how to do those tasks.
- Engineering biology the application of rigorous engineering principles to the design of biological systems.
- Future telecommunications evolutions of the infrastructure for digitised data and communications.
- **Semiconductors** a class of electronic materials with unique properties that sit at the heart of the devices and technology we use every day.
- Quantum technologies devices and systems which rely on quantum mechanics, to provide capabilities that 'classical' machines cannot.



# **Example innovation challenges**



- Resilient timing
- Sovereign quantum capability
- Secure communications
- Trusted emissions monitoring
- Early diagnosis and treatment of priority diseases
- Trustable climate and earth information
- Trusted autonomy
- Technology for clean growth

## **National Timing Centre Programme**



Funded by UKRI's Strategic Priorities Fund and delivered with Innovate UK as a partner, the 5-year programme aims to support multiple industries – from the electricity networks and finance, to broadcast, telecoms and aerospace. The programme is developing the UK's timing capability to improve security and resilience, communication and implementation of new technologies across the country.

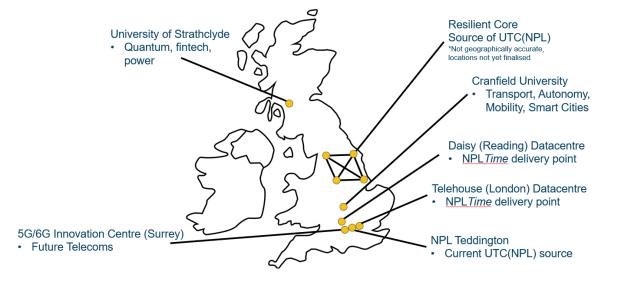


## Resilience - £17.3m

Resilient enhanced timescale infrastructure



## Innovation - £9.5m


- Innovation calls (Innovate UK) £6.7m
- Nodes

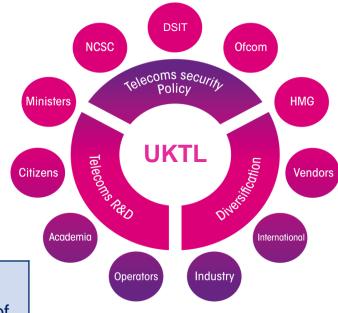


### Skills - £3.5m

- Training blueprint
- E-courses, degree modules, secondments, studentships, apprenticeships

## Innovation node locations available to industry in the 2022 Innovate UK innovation competition






## **UK Telecoms Laboratory**





UKTL activities will enable industry to raise & maintain security and resilience of UK's telecoms networks to world leading standards



### **Vendor diversification**

Supporting incumbents and new vendors to build secure, interoperable solutions, ensuring security concerns do not become a barrier to entry into operator networks.

## **Security research**

Discovering and examining new and emerging vulnerabilities in telecoms and related systems or equipment, to help the sector and the UK's national security.

## **Security testing**

Raising the bar on the security of the UK's telecoms live networks currently deployed and their supply chains, through independent testing of equipment and network functions.





## **Skills**

# **NPL Quantum Programme**

Building quantum measurement expertise, facilities and infrastructure, supporting innovation across the UK

- Longstanding quantum research programme: computing, sensing, communications, security, timing and metrology
- Home to 100+ scientists Quantum scientists, and are developing the quantum skills base training apprentices, graduates & PhDs
- Convene and collaborate to support the UK's growing quantum tech sector
- NPL's Quantum Test and Evaluation Programme supports industry by addressing the barriers to innovation and accelerating the commercialisation of quantum technologies.







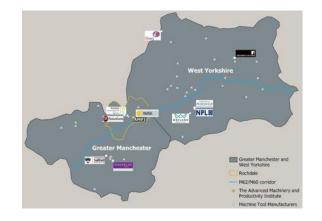
Technology Secretary, Michelle Donelan MP (right) with NPL's Professor Olga Kazakova (left) when visiting NPL's AQML



# **Advanced Machinery & Productivity**



A £22.6m UKRI SIPF grant over 5 years brings together 10 partners across West Yorkshire & Greater Manchester


- 7 new jobs created at the Institute, c.20 at HEI's
- 660 new direct jobs across region
- 530 indirect jobs across region
- >40 companies across region participating

AMPI is an industry led initiative that will stimulate and support rapid growth of the UK's advanced machinery and robotics sector.

 A £2bn UK export capacity will be created within 10 years establishing over 30,000 high value manufacturing sector jobs.

## Strength in Places Fund





























# Businesses accessing our unique capabilities\*

NPL helps innovative UK businesses at all stages of their journey, from start-up to scale up to access its world leading expertise and facilities through a variety of business support schemes which currently includes:

- Analysis for Innovators, A4I (partnership with Innovate UK)
- Measurement for Recovery, M4R
- Measurement for Business, M4B







270 R&D projects funded






# **Analysis for Innovators**

Analysis of participants feedback shows:

- 87% of companies believe their commercial opportunity has greatly or moderately increased as a result of their A4I project
- 51% of participants expect to introduce either a new product, service or process within a year of an A4I project
- 82% of companies expect to see a financial benefit from their A4I project
- Companies say 83% of projects would not have gone ahead or would have gone ahead on a smaller scale without A4I













# Measurement for Recovery (M4R)



Created and led by NPL, M4R brings together the UK's top measurement science experts and specialist laboratory facilities to address problems for UK companies with new approaches, to help drive growth and recovery with up to 20 days support and advice at no charge.

The programme was conceived to support UK industry in its recovery from COVID-19 with access to cutting-edge R&D, expertise and facilities to help solve analysis or measurement problems that couldn't be resolved using standard technologies and techniques.

The idea was to help boost productivity and competitiveness in UK industry, unleashing innovation and making the UK a great place to work and do business.



























# Measurement for Business (M4B)

Launched 2023.

It is open to UK SMEs with a product or service in development. It offers access to NPL's expertise to support SMEs to solve measurement problems and accelerate the product or service getting to market.

It s currently open to applications from:

- SMEs from the Energy Sector
- SMEs from the Greater Manchester & Yorkshire region



## **Impact**



NPL's contribution to economic growth is channeled through **regularly supported firms** 

"Supported" with measurement services or R&D in collaboration with NPL

"Regularly Supported Firms" are supported for at least 5 of the past 6 years

**RSFs** see net-additional increase in labour productivity:

£37.5m in extra wages

£338m benefits to the UK economy

## **Metrology Research Roadmaps**



The NPL Metrology Research Roadmaps outline our research agenda covering the next ten years. They will guide the development of specific research programmes, both within and across disciplines, as we seek to answer current scientific questions and reduce scientific and measurement uncertainties.

- The redefined kilogram
- The redefined kelvin
- Redefinition of the second
- Digital metrology
- Medical physics
- Net zero environmental metrology
- Net zero technology metrology

- Advanced manufacturing and productivity
- Biometrology and molecular imaging
- Quantum electrical metrology
- Quantum clocks, sensors and communications
- Quantum computing



|                                  |                                                | Time                                                                                                                                                               |                                                                                                                                   |                                                                                                                                                                                                 |                                                                                                                                             |                                                                                                                                                     |                                                                                                                                                           |
|----------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Theme                            | Sub-theme                                      | 2021                                                                                                                                                               | 2023                                                                                                                              | 2025                                                                                                                                                                                            | 2027                                                                                                                                        | 2029                                                                                                                                                | 2031                                                                                                                                                      |
| Energy generation                | Wind                                           | High-speed Digital<br>Image Correlation<br>(DIC) for turbine blade<br>composites; ultrasonic<br>methods for piling                                                 | Validated noise<br>abatement methods for<br>offshore wind<br>construction                                                         | Validation of low noise<br>construction (blue<br>piling, floating wind);<br>validation of <i>in situ</i> DIC<br>methods                                                                         | ISO standards for NDT<br>of composites;<br>validated methods for<br>cumulative ocean noise<br>effects with uncertainty                      | Traceability in recycled<br>composites; ISO<br>standard high-speed<br>DIC; ocean noise<br>mapping for GES                                           | Liquid composite<br>moulding digital twin;<br>validated methods for<br>estimating effect of<br>noise on ecosystems                                        |
|                                  | Nuclear                                        | Establish NMI role for<br>SMR, AMR & fusion<br>programmes; ASCC<br>test protocol                                                                                   | UKAEA support for<br>fusion research; ASCC<br>environmental variables<br>analysis                                                 | R&D for SMR<br>challenges; ISO<br>standard on ASCC<br>testing                                                                                                                                   | Tools for lifetime<br>prediction in storage of<br>nuclear waste                                                                             | Online SMR monitoring services and standards; R&D for AMR/Gen-IV                                                                                    | Integration of lifetime<br>prediction and<br>monitoring tools                                                                                             |
|                                  | Carbon Capture, Utilisation and Storage (CCUS) | First methods & PRMs<br>for impurities in CO <sub>2</sub> :<br>literature review on<br>corrosion test methods                                                      | Test facility for solvent<br>degradation; corrosion<br>test capability; UK BAT<br>amine/nitrosamine<br>measurements               | PRMs; sampling good<br>practice & QA; draft<br>standard corrosion test<br>method                                                                                                                | CMCs for impurities in CO <sub>2</sub> : AMPP standard corrosion test; CO <sub>2</sub> loss quantification standard                         | ISO standard on testing<br>CCUS solvents; industry<br>specifications for<br>material selection                                                      | ISO standard on QA of CO <sub>2</sub> in CCUS; integration of lifetime prediction and monitoring tools                                                    |
| Energy storage<br>& distribution | Hydrogen                                       | Fuel cell & electrolyser validation & modelling; PRMs for H <sub>2</sub> /Natural gas blends; humidity in H <sub>2</sub> ; H <sub>2</sub> permeation in composites | Impact of impurities on<br>fuel cells; PRMs;<br>modelling apps; ISO<br>14687 UKAS<br>accreditation; humidity<br>calibration in Hz | Draft standard fuel cell<br>& electrolyser test<br>methods; PRMs for<br>100% H <sub>2</sub> in gas grid;<br>humidity calibration at<br>elevated pressure; LH <sub>2</sub><br>mechanical testing | ISO & IEC standards;<br>high power fuel cell &<br>electrolyser stacks;<br>humidity traceability in<br>Hz: Hz leak<br>quantification methods | Inline quality control in<br>fuel cell & electrolyser<br>manufacturing; 700 bar<br>H <sub>2</sub> sampling rig; CMCs<br>for humidity<br>measurement | Next gen tech;<br>hybridisation; systems;<br>annual PT scheme for<br>H <sub>2</sub> ; stable multi-<br>component PRMs at<br>ISO 14687 purity<br>threshold |
|                                  | Batteries                                      | Standard test protocols,<br>modelling tools, in situ<br>& operando diagnostic<br>techniques                                                                        | Inline quality control in<br>manufacturing; module<br>testing; modelling apps                                                     | Draft standard test<br>methods; pack testing;<br>traceable fibre-optic<br>thermometry                                                                                                           | IEC standards for<br>performance & lifetime;<br>BMS; measurement<br>methods for next<br>generation materials                                | Systems modelling;<br>standard methods for<br>electrode composition<br>determination                                                                | Next gen tech;<br>hybridisation; system<br>management; multi-<br>modal techniques for<br>electrode composition                                            |
|                                  | Electricity Grid                               | Measurement needs for<br>stable integration of net<br>zero renewables<br>ensuring inertia, system<br>strength and low<br>disturbance                               | New inertia reference<br>method; SS algorithms;<br>early warning methods<br>for non-synchronous<br>oscillations                   | Inertia test beds, site & instrument verification; NSO protection; traceable condition monitoring via thermal imaging                                                                           | Commercial protection<br>solutions; data<br>analytics to assure grid<br>power quality for<br>mixed-source electricity                       | In situ condition<br>monitoring through<br>traceable thermal<br>imaging                                                                             |                                                                                                                                                           |
| Energy consumption               | Power Electronics                              | Intercomparison of<br>insulation resistance<br>testing methods in<br>damp environments                                                                             | Methods to assess<br>power electronics<br>reliability                                                                             | Internationally agreed<br>test method for<br>insulation resistance in<br>condensing<br>environments                                                                                             | Internationally agreed<br>test protocol for<br>reliability assessment<br>of protective coatings in<br>power electronics                     | Method for complex reliability test cycles                                                                                                          | Integrate data driven<br>diagnostics methods to<br>reliability test<br>measurements                                                                       |
|                                  | Electric Machines<br>& Drives                  | Open circuit<br>measurement<br>uncertainties < 1% for<br>NdFeB/SmCo magnets<br>in electric motors                                                                  | Magnetic<br>measurements under<br>simulated operational<br>conditions (high temp,<br>mechanical stress)                           | AC loss techniques to<br>assess soft magnetic<br>materials at 10-50 kHz<br>& under mechanical<br>stress                                                                                         | Internationally agreed<br>magnetic measure-<br>ments during operation<br>(up to 155 °C and non-<br>standard geometries)                     | Methods under complex<br>conditions (temp, stress,<br>non-sinusoidal<br>waveforms)                                                                  | Accreditation under combined operational conditions (target combined <i>U</i> of 3-10%)                                                                   |



npl.co.uk